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ABSTRACT 

In recent years, Natural Language Processing (NLP) 
has emerged as an important capability in many 
applications and areas of research. Natural language can be 
both the domain of application and an important component 
in the human-computer interface. This paper describes the 
design and implementation of "langutils,” a high-
performance natural language toolkit for Common Lisp. 
We introduce the techniques of real-world NLP and explore 
tradeoffs in the representation and implementation of 
tokenization, part-of-speech tagging, and parsing. The 
paper concludes with a discussion of the use of the toolkit 
in two natural language applications. 

General Terms 
Performance, Design, Languages, Human Factors, 
Algorithms 

Keywords 
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1. INTRODUCTION 
Natural Language Processing is becoming an important 
capability for many modern applications. From e-mail to 
user interfaces and speech interpretation to text processing, 
enabling a computer to perform manipulation and 
interpretation of language can dramatically enhance the 
usefulness of a program to its user. Major forms of natural 
language processing in use today include: 

- Dialog or speech systems use natural language, 
either written or text, as commands to an 
application; usually use restricted grammars. 

- Document classification automatically maps a 
document into a structured index or ontology. 

- Search and retrieval indexing of natural 
language content can be helpful in building richer 
search interfaces over text documents or web 
content. 

- Textual analysis analyzes text for various 
purposes such as gisting emotional affect, topic 
spotting, and acquiring user models. 

- Question answering and information retrieval, 
still an area of heavy research, use heavy natural 
language techniques to identify specific kinds of 
information within larger texts. 

This paper describes a Common Lisp toolkit [6] for line- 
and batch-oriented processing of English language content 
that can, in part, enable the aforementioned applications. 
The toolkit was substantially based on the original 
functionality of the Python-based MontyLingua toolkit [8] 
targeted specifically for large-scale, high-throughput text 
analysis.  

In Section 2, we motivate the specific algorithms selected 
for the toolkit and briefly describe their operation. Sections 
3 through 5 discuss performance and implementation issues 
for tokenization, tagging, and chunking, respectively.  We 
also discuss how unique features of LISP simplify the 
writing and management of these tasks. Section 6 explores 
the application of the toolkit to three representative 
applications and Section 7 introduces potential extensions 
to the system.  

2. BACKGROUND AND MOTIVATION 
The first stage of processing any unstructured text is to 
“parse” it into a more structured representation that 
annotates the key syntactic constituents over which 
semantic analysis can be performed. The process of parsing 
text typically consists of tokenizing the text into distinct 
words and punctuation tokens, mapping each token to a 
corresponding lexicon entry, tagging the token with an 
appropriate part of speech given the local context of use, 
and finally parsing or chunking the stream of tokens into 
phrase groups according to part-of-speech type, lexical 
features (such as tense), and the constraints of the 
language’s grammar. Each of these major steps is described 
below. A lexicon is a linguistic dictionary consisting of 
formal information about the form, use, and parts of speech 
of specific words. The term ‘lexical’ means “related to 
elements of a lexicon.”  A grammar for natural language, 
much as for programming languages, describes valid 



arrangements of words and punctuation and how specific 
atoms and phrases can be assembled into valid compound 
forms. 

2.1 Tokenization 
To allow a part-of-speech tagger to clearly identify the 
constituent elements of an English sentence, we first need 
to clearly extract the token sequence that provides the 
important syntactic building blocks. For example, we need 
to perform transformations such as: 

“…do: first a” => “…do : first a”  Punctuation separation 

“…after. The End.” => “…after . The End .”  Period 
separation 

However, the transformation cannot be implemented as a 
set of character-local rules, as the following sentence 
tokenization illustrates: 

“Pencil in an appt. for tomorrow at 6:00 o’clock.” => 

“Pencil in an appt. for tomorrow at 6:00 o’clock .” 

A correct tokenization of the above sentence only separates 
the period from its adjacent characters. The colon in 6:00 
and the period in appt. should not be separated from their 
surrounding characters.  

The process of tokenization in natural language processing 
remains a bit of a black art. The proper algorithm for 
tokenization depends greatly on the nature of input you 
expect: types of errors, internal structure of tokens (such as 
6:00), etc. Formal, technical documents often require very 
different handling than, for instance, text context extracted 
from a web page or news articles. For most English 
expressions, a list of common abbreviations along with 
special sub-forms for time, addresses, and such have to be 
maintained along with basic language-defined rules.  

2.2 Tagging 
Once the input has been tokenized, it should consist of 
linguistically distinct substrings separated by whitespace 
characters. Each unique substring should now have a 
specific syntactic role--such as a sentence-ending period or 
phrase-identifying comma--or it should be a word in the 
target language’s lexicon. The result provides the 
representation for part-of-speech (POS) tagging. 

Many approaches to automated POS tagging exist, and it 
remains an area of active research. The primary algorithmic 
approaches that have remained popular in recent years are 
(1) rule-based and (2) stochastic; both are considered 
supervised algorithms because they require manual 
engineering, such as manually tagging training corpora and 
specifying a lexicon. Rule-based approaches such as the 
Brill tagger [2] encode expertise into rules that make 
tagging decisions based on context frames (i.e. the window 
of tokens surrounding the current token), and 
morphological clues (e.g. guess that an unknown word 

ending in “-s” is a plural noun). Stochastic approaches (cf. 
[5]) perform tagging based on word-tag frequency (e.g. 
assign a word the most frequent tag for that word from the 
training corpus), or based on Bayesian n-grams (i.e. a 
word’s best tag is conditioned on a window of n words 
which surround it). More complex stochastic approaches 
often use Hidden Markov Models to combine information. 

The rule-based approach offers arguably greater 
algorithmic transparency in authoring and debugging, while 
stochastic taggers tend to behave more opaquely and fail 
more irrationally. The performance of stochastic taggers 
also tends to be more closely tied to the genre and nature of 
the training corpora. Of course, overall evaluated tagger 
performance is a prime consideration, regardless of 
methodology. For these reasons, we chose the Brill tagger 
because as it is the most well known rule-based tagger, 
variously reported to tag words with an accuracy between 
90-96%, depending on the implementation and corpus. 
Additionally, the Brill tagger is well positioned for NLP 
interoperability and has established multilingual support; 
the Brill tagger uses the Penn Treebank tagset [11], a 
widely used convention in the POS tagging community, 
and has been trained to tag several other natural languages 
such as French and Spanish. 

The Brill tagger operates in two phases. The first phase 
uses the lexicon to provide the most likely POS tag for 
known words. If a word is unknown, default rules are 
applied along with a set of lexical rules that use suffix, 
prefix, and other word-local information and a default rule 
to guess the initial POS tag for all tokens in the document. 
The default rules are typically that any unknown word is 
tagged with a ‘NN’ and a ‘NNP’ if it is capitalized and not 
the first word of a sentence. Lexical rules are learned 
during the supervised training phase and then recorded in a 
file in the form: 
“NN ing fhassuf 3 VBG,” 
meaning that if a word is tagged with the default noun tag 
‘NN’ and has a three-character suffix ‘ing,’ the POS tag 
should be changed to a verb.  
The second pass of the tagger takes the initial tag guesses 
and transforms the tag of a given word based on the tags 
surrounding it. These contextual rules are of the form: 

“RB JJ NEXTTAG NN” 
This line indicates that an adverb (RB) should be changed 
to an adjective (JJ) if the tag of the next word is a noun 
(NN). 
The result of this process is a probabilistic tagging of the 
words of the input sentence. The quality of the tagging is a 
function of how similar the input text is to the original 
corpus that was used to train the tagging rules. 

The reference C implementation of the Brill tagger is 
available on the web and includes the training program for 



learning rules. This program is not currently implemented 
as part of the langutils toolkit; however, the C version can 
be used to generate files offline that are read by the LISP 
version. 

The training program for the Brill tagger leverages a 
learning paradigm called transformation-based error-driven 
learning. This learning process operates by iteratively 
discovering rules that minimize the error of the automatic 
tagger vs. a supervised reference set. The training program 
is initialized with a set of rule templates of which the above 
lexical and contextual rules are instances (ie a template for 
the contextual rule would be ‘POS1 POS2 NEXTTAG 
POS3’). The program uses default rules and the lexicon to 
tag one part of the reference set. Where the reference tags 
differ from the automatically assigned tags, the program 
instantiates one or more of the templates, which fixes the 
error directly. The remaining part of the reference corpus is 
tagged in independent passes with each newly instantiated 
rule. The individual rule that decreases the overall tagging 
error by the largest amount is added to a rule set. The 
process iterates by using the default rules plus the current 
rule set to create the initial state from which new rules are 
instantiated. During evaluation, the rule set is extended 
with each of the newly instantiated rules and run separately. 
The best rule is added to the rule set. The process 
terminates when the improvement in the error rate by the 
best rule in a given stage falls below a pre-determined 
threshold.  

The training program has two stages, one to learn the 
lexical rules and minimize the per-word tagging error and 
another to learn the contextual rules to minimize the total 
tagging error. The two primary reference sets used in the 
Brill tagger are the hand-tagged Wall Street Journal [11] 
and Brown corpora [7], but any properly tagged corpus can 
be used with the training program. 

2.3 Parsing and Chunking 
Once a high-quality tagging of the tokens is accomplished, 
a process to parse those words into meaningful groupings is 
needed before any significant semantic processing can take 
place. Parsing typically results in the construction of parse-
trees that represent at the higher levels of the tree syntactic 
groups, such as sentences, clauses and verb and noun 
phrases. As you introduce richer subphrases, as well as 
commas, colons and semi-colons, conjunctions and 
disjunctions (and/or) and other syntactic words, finding the 
specific tree arrangement relating one phrase to another 
becomes quite difficult.  

The chunking process is a subset of a complete parser that 
identifies the basic leaf phrases in a parse tree: the noun, 
verb, and adverbial and prepositional phrases. They can 
appear as simple patterns of POS sequences, such as ‘DT JJ 
, JJ NN NN’ which identifies a noun phrase such as 
“the/DT large/JJ ,/, wary/JJ basset/NN hound/NN”.  

With a chunked form of the sentence available, we can 
perform lightweight syntactic and semantic analysis 
without developing a complete parse tree. For example, 
phrase attachment involves knowledge of specific words in 
the phrases, which helps to identify high likelihood 
attachments. We can also train a classifier to identify 
specific semantic relationships (cause, proceeds, etc) 
among different chunks. 

Identifying full parse trees has exponentially more 
complexity than identifying the constituent chunks. The 
popular parsers today, such as Michael Collins’ statistical 
parser [4], train statistical models of phrases and phrase 
relationships over large corpora. The performance of these 
systems typically yields a very low throughput system. 
However, we can trade quality and depth of analysis for 
speed. Langutils’ design allows a developer to trade off 
performance against the depth and quality of analysis 
required by the end application. 

2.4 Other Important Language Capabilities 
There are many other functions a language-oriented library 
may want to provide to a developer.  

Lemmatization. For example, you may want to take all the 
surface forms of a verb or noun and unify them for 
purposes of analyzing the semantic content irrespective of 
time, possession, or plurality. A common linguistic term for 
this process is lemmatization, which means finding the 
lemma or root definition of a lexical form. Once you have a 
lemma, you may also want to generate all valid surface 
forms to help generate, for instance, all valid sentences that 
express a given semantic relation between two lemmas in a 
query expansion (ie “John ran in a marathon,” “John runs 
in a marathon,” “John running in a marathon,” “John can 
run in a marathon,” “John will run in a marathon,” etc).  

Spelling correction. When analyzing open text, it is often 
important to automatically correct the most common 
spelling mistakes to avoid assuming a misspelled word is in 
fact an unknown noun or verb.  

Stopwords. The analysis of certain large-scale corpora often 
requires that you focus on the content words such as major 
verbs or nouns, and ignore words that play a more syntactic 
role such as ‘with’ or ‘and.’  This is called stopword 
removal. 

Semantic analysis. Finally, there are syntactic-semantic 
analysis tools useful for extracting some basic information 
from chunked language such as phrase attachment and 
anaphor resolution (references of he, she, it, that, etc). 

3. REPRESENTATION  
The intended application of the langutils toolkit was 
analysis of large bodies of text; therefore, minimization of 
the performance footprint became a significant constraint 
on its design. Being sensitive to performance requires 



thinking first about algorithm and data structure choices 
and the impact of those choices on cache and CPU 
behavior. After those decisions are settled, we can focus in 
on optimizing for local code generation. 
 
In LISP, we aren’t forced by default to always consider and 
make low-level performance choices, as is typical in C++. 
Because of this, additional knowledge is required to move 
from writing programs quickly to writing efficient 
programs. In one sense, optimizing LISP programs is 
harder than in more primitive languages because the 
surface syntax does not immediately inform us as to the 
storage and computation costs at the machine level. 
Optimization of LISP programs requires new syntactic 
constructs such as inline type and optimization 
declarations, as well as consideration of the uses of first 
order procedures, consing and numbers. Properly cared for, 
however, LISP programs can perform as well as any 
popular “high efficiency” language and above all, you only 
have to expend this effort in the higher level design and in a 
few low level building blocks – the rest of the program 
benefits from LISP rapid development model. In the toolkit 
we highlight on three primary classes of optimization: 
cache-sensitive data representations, algorithms that 
optimize for locality, and enabling efficient compilation. 
 
An immediate implementation choice facing a natural 
language library is choosing how to represent the input 
strings. You can maintain the original text and add 
annotations as part of the strings (e.g. tagging ‘run’ yields 
‘run/VBD’) or choose a less directly readable but more 
efficient machine representation. In MontyLingua the 
decision was made to leverage Python’s built-in regular 
expression library and perform all processing directly in the 
text. This made it easy to describe regular expressions over 
text such that the code clearly reflected the intended 
semantics.  
 
In the case of Langutils, throughput was our top priority. 
We chose to map each unique natural language component 
to a unique integer token that serves as an index to various 
table-based resources such as the lexicon, stopword lists, 
and spelling corrections. This conversion takes place after 
tokenization and the lexical rule application during tagging, 
at which point all the original string content is converted 
into arrays of token integers. We use a CLOS class, the 
vector-document to maintain additional information about 
the source text, such as origin and the list of POS tags 
generated by the tagger. 
 
4. TOKENIZATION 
In this section token is a generic term referring to 
contiguous sets of non-whitespace characters. Tokenization 
converts an input token stream to an output token stream 
separating punctuation from input tokens. As described in 

section 2, we only want to separate punctuation if it plays a 
direct syntactic role.  Many punctuation characters are part 
of specific tokens, as in numbers (2.00), times (2:00) and 
dates (12/24/05). 
 
We observed in Section 2.1 that the process of identifying 
where to place new whitespace characters requires a 
contextual window of characters around the present 
position to be considered. This window is not of fixed size, 
prohibiting the use of a lookup table. In general we need to 
have available the information for all the ways in which 
punctuation-containing tokens might get parsed so that we 
can separate sentence syntax markers from token syntax 
markers. 
 
The simplest approach to efficiently solving this problem is 
to build a simple automaton that directly recognizes all the 
valid cases of tokens within (i.e. floating point number vs. 
abbreviation vs. end of sentence). Rather than build the 
infrastructure for efficient parsing from scratch, we chose 
to follow the techniques described in Henry Baker’s classic 
paper on META [1] that builds on a parsing technique 
described in [12]. 
 
4.1 META 
META is a macro package and design methodology in 
which it is easy to describe near optimal parsing for a wide 
variety of languages. Moreover, like the Attributed 
Grammars that most undergraduate CS majors learn, 
META expressions can perform computations while they 
are matching sub-expressions in the input. 
 
META expressions are based on a reader syntax and macro 
package for building conjunctions and disjunctions, type 
assertions and in-line procedure calls (acting as terminal or 
non-terminal productions). The with-string-meta macro 
uses variable capture in the top level macro to provide 
standard labels (index, string) describing the state of the 
parser so we can easily create local state markers in 
procedures to implement arbitrary look-ahead and 
backtracking for sub-expressions. A meta-match macrolet 
is defined by the top-level macro and matches META 
expressions against the current state, returning t or nil based 
on whether that expression matched or not. By putting 
various meta-match calls into labels statements and 
recording the starting value of index, we can easily have 
our expressions broken up and reused. This improves 
readability but also enables the parsing of a large class of 
context-free grammars. 
 
META provides reader syntax for generating compact 
meta-match expressions. In these expressions, [e1 e2 …] 
means AND, {e1 e2 …} means OR, !(expr) means evaluate 
the expression ‘expr’ and @(test var) means to do a type 



test on var. There is an example of the use of this syntax in 
section 4.3 below. 
 
We extended the META program by adding a built-in 
procedure name called meta-dict such that !(meta-dict 
name) will determine if the current string matches any 
string in a list of strings referred to by ‘name.’ This 
construction enables us to easily ignore known 
abbreviations when tokenizing periods. 
 
4.2 Tokenizer Design 
 
The tokenizer proceeds in two stages: 

1) Scanning the original string input and extracting 
all punctuation that is adjacent to other characters 
by copying the source data into an output buffer 
and inserting spaces to isolate the character. 

2) At the end of each contiguous set of characters, 
search for errors in the parse (part of a number, 
abbreviation, etc) and undo the separation when 
necessary. 

Thus the parser has a set of internal functions for scanning, 
copying, and manipulating the source and destination 
strings at the ‘token’ level and a second set of internal 
functions for testing for specific tokenization sub-cases. 
The first set of functions takes all punctuation characters 
that might need to be tokenized, and optimistically 
separates them. The set of sub-cases recognizes when this 
should not have happened and removes the whitespace, 
effectively undoing the first stage’s action. 
 
We chose this approach to optimize for the common case, 
making a trade-off between the cost of cleaning up 
incorrect tokenization and that of testing every token 
against all possible parses. Instead, we test for punctuation-
including tokens only after we see a token with a 
punctuation character and undo the tokenization only when 
it would have been accepted by a regular expression for 
that particular token type.  
 
The langutils tokenizer supports contractions, possessives, 
numbers, dates, times, standard abbreviations, common 
abbreviation, and capitalized proper names. It also detects 
end of sentence conditions and inserts a newlines after 
sentences so input can be processed one sentence at a time 
by reading out lines from the resulting string. The tokenizer 
interface is intended for use in both batch/string and 
streaming mode, so you can process chunks from a large 
file or a continuous network stream. The tokenize-stream 
returns a value list consisting of success-p, final-index, 
tokenized-string and remainder-string. The tokenize-string 
interface calls tokenize-stream on a stream version of the 
input string. 
 

4.3 Tokenizer META Expressions 
The recognizer for a valid case of a time, date, or simple 
numbers is implemented as follows.  
 
(fix-numerics (&aux (old-index index) d)  
  (or (meta-match [@(digit d)  
                   {#\Space}  
                   {#\: #\, #\/}  
                   {#\Space}  
                   @(digit d)  
                   !(delete-spaces (- index 4) 2) 
                  ]) 

  (progn (setq index old-index) nil))) 
 

The original string “2:30” would be “2 : 30” after the 
scanner was applied. So that the token ‘:’ would not be 
inserted into the token stream, we want to recombine the 
three tokens into a single token “2:30.”  The above function 
tests for this specific failure case and if the test fails, it 
setq’s the current index (in the outer let statement) with the 
index from when the function was called (old-index). The 
expression beginning with meta-match uses the META 
syntax to test the string buffer at the current index for any 
sequence of: a digit, a space, a colon, comma, or slash 
followed by another space and any digit. This captures all 
strings of the form “$2 . 00”, “3 : 45” and “12 / 24”. The 
final expression between the square brackets starting with 
‘!’ is an imperative that is only run if all the prior 
expressions match as true. This procedure deletes two 
spaces between the current index and the current index 
minus 4. 
 
4.4 Performance Optimization and Results 
We have designed the parser to minimize the number of 
comparisons and the amount of backtracking that has to be 
done over input tokens. Now, to ensure that the compiler 
can produce optimal code, we must insert the proper 
optimization and type declarations for our data structures 
and performance-critical functions. To ensure that 
functions can be open-coded by the compiler, their input 
arguments must have their type properly declared. 
 
Our input array is a string, so we use the char function to 
access characters at specific offsets. char is a special case 
of aref. We write processed characters into a simple-array 
of type base-char using aref. Both of these procedures can 
be open coded as load instructions if the source variables 
are strings and simple-arrays and the indexes are known to 
be proper fixnums.  
 
To avoid allocating memory dynamically, we create a 
single static array for all operations accessible to the parser 
closure. At the end of a parse session, we transform the 
array back into a string, requiring a second visit to the 
array. The array allocation is increased to support the 
length of any input string. For moderately sized inputs the 



scratch array is likely to already to be in the L2 cache 
minimizing the initial cache misses. 
 
The performance data in the rest of this document are based 
on the Allegro 7.0 LISP compiler and runtime on a 
1.67Ghz G4 PowerBook with a 167Mhz front-side bus. 
Running in a tight loop on a test document, the tokenizer 
can process approximately 30,000 words, or nearly 200kB, 
per second using an 8-kilobyte test document. 

5. POS TAGGING 
The Brill tagger, as previously described, proceeds in two 
stages: 
 

1) Create an initial tag using the lexicon, default 
rules and lexical rules 

 
2) Change initial tags based on rules matching the 

adjacent words and tags 
 

POS tags are represented in memory as LISP symbols. We 
chose this representation because it is easier to write and 
debug. We avoided this representation with words because 
several hundred thousand symbols in the langutils package 
have a significant storage impact. 
 
5.1 Initial Tagging 
The first step of POS tagging scans through the tokenized 
text string and uses characteristics of the text to guess the 
first initial POS tag. The algorithm looks up the token id for 
the word in an EQUAL hash table indexed by the token 
string. The ID is used to find a lexicon entry. If it exists, the 
most likely POS tag is pulled from the lexicon and used as 
the guess for the tag.  
 
If the lexicon entry is empty, the algorithm then defaults to 
a noun (NN) or proper noun (NNP) depending on whether 
the word is capitalized. We then apply the set of lexical 
rules that were learned during training to see if the prefix, 
suffix, or other lexical characteristic of the unknown word 
indicates with high probability a particular part of speech. 
 
Lexical rules are represented to the tagger as text lines in a 
file that parameterizes specific comparison templates as 
discussed in section 2. For example, “NN ble fhassuf 3 JJ” 
means that if the last three letters of an unknown word 
labeled as an NN is ‘ble’, then it’s probably an adjective 
(JJ). The template referenced by “fhassuf” is created by the 
function make-lexical-rule, which returns closures 
implementing a specific instance of the template. 
The closure template is defined as follows: 
((string= fname "fhassuf") 
 (let ((old-tag (mkkeysym (first list))) 
       (suffix (second list)) 
       (count (read-from-string (fourth list))) 
       (new-tag (mkkeysym (fifth list)))) 

    #'(lambda (pair) 
        (let ((token (car pair)) 
              (tag (cdr pair))) 
          (if (and (eq tag old-tag) 
                   (strncmp-end2  
                     suffix  
                     token       
                     count  
                     (- (length token) count))) 
        (progn (setf (cdr pair) new-tag)      
                      pair) 
  pair))))) 
 
The input line is split into substrings, each of which is 
converted by the let bindings based on the form of the 
matching closure template. The comparison performed by 
the inner call to strncmp is a simple EQ between elements 
of the strings treated as an array. 
After the token ID has been looked up and the initial tag 
has been guessed, the main loop writes the token ID and tag 
symbol into two temporary arrays used by the second 
tagging stage.  
 
The code above does not include the declare statements 
necessary to allow a compiler to open code the primitive 
calls, but in the actual implementation available online, all 
types and aggressive optimization switches are included to 
enable the compiler to open-code primitives and generate 
as compact code as possible within these closures. The call 
to strncmp is declared inline, which would allow for good 
additional optimization, but the Allegro compiler ignores 
the inline declaration except for built-in primitives. This 
makes sense for development, but is non-ideal for this 
particular application. (A macro version of strncmp would 
accomplish this objective.) 
 
5.2 Contextual Rule Application 
Representing text as a linear sequence of token IDs has 
tremendous performance benefits over storage as raw 
strings. The simplification of the contextual matching rules 
alone will yield a significant payoff in runtime 
performance. This also significantly compacts the total 
storage requirements for a given amount of text, implying 
fewer runtime cache misses as well as fewer load, store and 
compare operations.  
 
Contextual rules are represented similarly to the lexical 
rules described above. A make-contextual-rule function 
returns compiled closures. Closure variables capture values 
that characterize an instance of the rule template defined in 
the enclosed lambda statement. A contextual rule is 
represented on disk as: 
 
“RB JJ NEXTTAG NN” 
This rule implies that a word tagged as an adverb that 
precedes a noun should instead be an adjective. 



Here we leverage the power of the LISP macro system by 
building in a level of abstraction over the use of individual 
case statements above. 
 
5.2.1 A Simple Template Language 
The full rule template has numerous declarations, may 
operate over several different possible arrays (tag or word 
array), and matches against different offsets into those 
arrays. However, this can be abstracted to a simple set of 
labels and aref indices. Thus, we can capture the essential 
parameters of the complex case, let, and lambda expression 
as: 
 
("NEXTTAG" (match (0 oldtag) (+1 tag1)) => newtag) 
 
This rule is labeled “NEXTTAG,” and the semantics of the 
rule indicate that if the current pointer in the document has 
a POS tag of the type oldtag then if the next word’s POS 
tag matches tag1, then we should change the current POS 
tag to newtag. The three labels, oldtag, tag1 and newtag 
have a specific meaning to the macro as defined by the 
following partial table: 

 
(list 'tag1 'tags '(mkkeysym (fourth pattern))) 
(list 'tag2 'tags '(mkkeysym (fifth pattern))) 
(list 'word2 'tokens '(id-for-token (fifth            
                                      pattern))) 
(list 'oldtag 'tokens '(mkkeysym (first pattern))) 
(list 'newtag 'tokens '(mkkeysym (second    
                                     pattern)))) 
 
This table tells the template construction macro to create a 
let binding as specified above for each name referenced in 
the original rule template and into which array the offset 
should be computed. The template creation macro function 
then generates an individual case statement, including 
optimization declarations, as illustrated below: 
 
((string= name "NEXTTAG") 
 (let ((tag1 (mkkeysym (fourth pattern)))) 
   #'(lambda (tokens tags idx) 
       (declare (ignore tokens) 
           (type (simple-vector symbol) tags) 
           (type fixnum idx) 
           (optimize speed (safety 0))) 
       (if (and (eq (svref tags idx) oldtag) 
                (eq (svref tags (+ idx 1)) tag1)) 

       (progn  
       (write-log …) 
       (setf (svref tags idx) newtag)))))) 

 
The oldtag and newtag variables are bound external to the 
individual case statements as they are at the same location 
in the rule expression for all rules. The tokens, tags and 
current index are passed to the rule through the lambda 
arguments. 
 
5.2.2 Performance 
The expression generated by the macro above will be 
compiled directly into a closure containing code for two 

comparisons with constants that, upon success, will side 
effect the new tag directly into the POS tag array. This can 
be done in a handful of instructions and we pay for our rule 
abstraction the overhead of a function call. It is then highly 
efficient to apply a set of rule closures, one at a time, to 
each location in the document arrays. The rules should all 
become cached in the instruction cache (barring task 
switching effects) and the closure frames should mostly be 
cached in the data cache (there may be some minor 
interference with array date). We achieve full locality on 
each fetch of array data into the data cache.  
 
A tokenized string can be fully processed into a vector 
document at the rate of 15,000 words per second for small 
(50 word) strings. For our 8-kbyte test document, we end 
up with a vector document of 1670 tokens IDs. Running the 
tagger in a tight loop over the tokenized source string, we 
achieve a throughput of 21,000 tokens per second, or 12 
moderately sized documents. 
 

6. PHRASE CHUNKING 
The final major capability provided in the langutils toolkit 
is phrase chunking. Once a tagged vector-document object 
has been created, the chunking process can be very 
lightweight. Chunking becomes looking for a valid linear 
sequences of tag types. The total set of valid linear 
sequences matching a particular phrase type can be 
expressed as simple regular expression: 
(defconstant verb-pattern 
  '(and (* or RB RBR RBS WRB) 
        (? or MD) 
        (* or RB RBR RBS WRB) 
        (or VB VBD VBG VBP VBZ) 
        (* or VB VBD VBG VBN VBP VBZ RB RBR RBS) 
        (? or RP) 
        (? and (* or RB) (or VB VBN) (? or RP)))) 

In this simple regular expression, ‘*’ indicates to match 
zero-or-more of the following expression, ‘?’ for zero or 
one and ‘+’ for one-or-more. The absence of a modifier 
means to match exactly one instance of the expression. The 
and/or labels at the head of an expression indicate whether 
all or any of the following constants should match for the 
full expression to match.  
It is easy enough to write specific code to support a given 
regular expression, or to use the META infrastructure to 
create the parser by hand. However, we do not need the full 
generality of META based parsers, and instead directly and 
efficiently support this syntax with a simple macro system 
that compiles these expressions into custom parsers that 
operate directly on the text and tag arrays. 

6.1 Regular Expression Compiler for Arrays 
The regular expression syntax and semantics provided 
above are intended to operate on arrays of data. The result 
of applying the expression to an array is a pair of offsets 
into the array indicating where the matched pattern begins 



and ends. A generic vector-match macro abstraction was 
developed for this purpose and used in support of the 
phrase-chunking implementation. This package provides a 
procedure, match-array, that recursively generates the 
direct and, or, and if expressions implementing the regular 
expression pattern. The generated code keeps track of the 
starting offset and finishing offset of the match and can be 
called incrementally at each incremental offset into an array 
to search for any match of the regular expression it 
implements.  
A number of utility macros were constructed around 
match-array such as compile-pattern, find-all-patterns, 
vector-match1 and do-collect-vector-matches. The 
function compile-pattern calls the LISP compiler on an 
interpreted lambda to generate a compiled closure that 
takes as input an array and offset and returns the start and 
end indices upon finding a match. do-collect-vector-
matches is a context-creating macro that takes as its 
arguments two labels, a pattern expression, an array object, 
and a body expression. The body is executed whenever 
there is a match of the pattern against the vector; the labels 
are set to the beginning and ending indices of the matched 
region.  
The implementation of a specific phrase chunker requires 
only that we call do-collect-vector-matches over the 
appropriate array within the vector-document we are 
analyzing. The body creates a phrase object that stores the 
beginning and ending index of a particular match as well as 
the source document it references. Here is the chunker that 
finds phrases described by the verb-pattern above: 
 
(defmethod get-verb-chunks ((doc vector-document)) 
  (do-collect-vector-matches (s e verb-pattern)  
                             ((document-tags doc)) 
      (make-instance 'phrase 
       :type :verb 
       :document doc 
       :start s 
       :end e))) 
 

6.2 Chunking Performance 
There are strong locality benefits to these compiled regular 
expressions. The constants and matching code are resident 
in the instruction cache and the data flows linearly through 
the data cache. A streaming pre-fetching CPU should 
successfully hide all of the latency to main memory for this 
application, leaving the pipeline performance as the 
limiting attribute. 
Using another tight-loop test where we extract verb phrases 
from our reference document, we can achieve a throughput 
of 250k tokens per second, or dozens of news stories per 
second. Tokenization and tagging, because of the data 
conversion and copying involved, are currently the 
bottlenecks for langutils processing throughput. Because of 
this, we can easily perform several extraction passes for 

different phrase types over small documents with minimal 
overall performance impact. 

7. APPLICATION EXAMPLES 
There are a number of good applications for the langutils 
library, a few of which are illustrated in the following 
section. 

7.1 Command and Control 
Command and Control is a paradigm for a speech or 
written natural language interface which allows a user to 
control a high-level programmatic API by speaking or 
typing simple sentences of the imperative form (e.g. “Show 
me all the coats for winter”) or declarative form (e.g. “The 
program should convert PDF into HTML”). Within these 
two simple constructions, it is relatively straightforward to 
map subject-verb-object roles onto a langutils chunked 
representation, and then subsequently to translate the 
syntactic frame to a high level programmatic API 
command. For example,  
Show me all the coats for winter   

(VX Show VX) (NX me NX) (NX all the coats NX) (PX 
for winter PX)  

verb: Show; obj1: me; obj2: all the coats; obj3: 
for winter  

show_webpage(user=’user’, 
   sql_command=’select all coats from table  
   where season=winter’) 

To achieve end-to-end command and control, a speech 
recognition package interprets user utterances into text, and 
langutils maps this text into subject-verb-object roles that 
could then map more cleanly into a particular application’s 
API. Using this approach, for example, an e-commerce 
website could allow users to navigate using natural 
language utterances. 
In a variation on the command and control idea, the 
Metafor code visualization system [10], uses MontyLingua 
to map an English narrative written in 
declarative/imperative form into programmatic form, i.e. 
object.function(argument). It would be straightforward to 
build this functionality on top of langutils. 

7.2 Extracting Common Sense 
Knowledge or expertise is often more easily elicited 
through unrestricted natural language utterances, especially 
when engaging end-user authors who are casual non-
programmers. However, to make computation facile, 
knowledge needs to be expressed more concisely and 
uniformly than free English sentences. Here, 
langutils/MontyLingua has an opportunity to bridge a gap, 
allowing knowledge to be authored as unrestricted natural 
language, and automatically extracting from the free text a 
more concise Subject-Verb-Object* representation, with 
words morphologically lemmatized and auxiliary words 
stripped. 



The Open Mind Common Sense (OMCS) knowledge base 
[13] is a corpus of 800,000 English sentences imparting 
social, causal, and physical common sense knowledge 
about the everyday world. Some of the sentences are pre-
structured as they were gathered through a website as a fill-
in-the-blanks activity (e.g. “The effect of ____ is ____”).  
However, users routinely fill these blanks with complex 
utterances. Using langutils/MontyLingua, the OMCS 
sentences were parsed into an ontology of syntactically 
regularized forms such as Noun Phrase (e.g. “sandwich”), 
Adjective Phrase (“red”), Verb (“eat”), and Verb-Argument 
(“eat :: sandwich :: in restaurant”) compounds. These 
regularized forms are taken as a computation-friendly 
knowledge representation and used to constitute the 
300,000 nodes of ConceptNet [9], the common sense 
reasoning engine generated from the OMCS corpus. 
In addition to extracting machine-computable common 
sense from the OMCS corpus, langutils/MontyLingua is 
also an integral part of ConceptNet’s high-level document 
processing API, enabling it to perform topic spotting, 
textual affect sensing, summarization, and other tasks by 
parsing any input text into the same ontology of 
syntactically regularized forms so that ConceptNet can 
‘recognize’ concepts in free text. 

7.3 Large-scale Web Mining 
Numerous efforts today use large-scale statistics over the 
web to mine for both linguistic and topic-specific content. 
In our commonsense reasoning project, we were 
investigating the relationship between concepts on a 
specific topic. Specifically, we were mining the web to 
discover neighborhoods of related ‘event’ concepts in the 
form of Verb-Object and Verb-Argument phrases such as 
“won a marathon” and “fell onto the ground.”   
The application used the public Google API to find pages 
related to a target query concept such as “ran a marathon.”  
The top 100 pages returned by Google were downloaded, 
stripped, tokenized, tagged, and chunked. The extracted 
chunks from all the pages were combined and ranked 
against each other according to several ranking heuristics, 
yielded a ranked list of matching concepts. Initial 
evaluations indicate that the system could achieve 30% 
high quality conceptually related phrases with 70% noise. 
Ongoing work on ranking and extraction seeks to boost the 
signal to noise ratio of the ranking system.  
The aggregate throughput of the system in a sustained 
mining context is 200 web pages per minute on a Dual 
PowerPC G5 with an average page size of 5kBytes of html-
stripped text. If we factor out the time spent accessing the 
Google API and downloading the HTML pages, the system 
achieves a throughput of nearly 400 pages per minute. 

8. ENHANCEMENTS AND EXTENSIONS 
There are a number of important enhancements and 
extensions to the current toolkit implementation we have 
considered. 

Token representation. The current token representation is 
flawed, as all tokens are assigned an integer value, whether 
a number, date or word. The code space of valid tokens in a 
given natural language lexicon is bounded to hundreds of 
thousands, but the code space of numeric or other 
structured tokens is unbounded. An escape coding 
mechanism in the vector-document abstraction could be 
used to indicate special token types that could then be 
looked up separately in a table, perhaps in an appropriate 
pre-processed form based on their specific type. 

Tokenization. There is an opportunity to improve 
performance by writing a compiler for our current 
implementation of meta-dict by factoring out common 
prefixes of the dictionary strings and ordering the prefix 
matching to minimize the total number of characters tested 
against a random language string. There are a number of 
ways to handle the tokenization, and we are not convinced 
that the approach we chose is optimal within the overall 
META approach.  

Improved tagger support. We intend to add the Brill 
training program to the toolkit in the future. We may also 
investigate the ability to tune a rule set based on the 
discovery of near misses by a semantic interpretation layer 
(i.e. an unknown token is a person, etc). This will be 
important for applications that want to parse text containing 
poor grammar, such as personal e-mail, or for expert 
domains for which there are no hand-labeled corpora. 

Multilingual support. The parsing approach we chose 
allows for relatively gentle scaling to multiple languages. 
Tagging scales directly as the Brill tagger has been trained 
on a few other languages, and only regular expression 
chunking and linking rules need to be written for other 
languages. Syntactic parsing into Subject-Verb-Object* 
form is easier in some languages; for example, Korean, 
Latin, and Japanese employ morphology or particles to 
explicitly mark a noun phrase as a subject or object, direct 
or indirect.  

The potentially difficult step in adding a new language 
would be updating the tokenizer. For some symbol-based 
languages, this is straightforward, but for many languages 
based on the Arabic alphabet, an alternate tokenizer for 
each language or a more general, customizable tokenizer 
would be needed. 

9. SUMMARY 
We have presented the motivation, features, and 
optimizations used in implementing a natural language 
processing library in LISP. Several of the unique features 
of LISP were presented as an illustration of how we can use 



LISP’s mechanisms for higher-order syntactic abstractions 
without losing the capacity for competitive run-time 
performance.  

We further presented applications of natural language 
processing to several domains and we hope that the 
availability of this library will encourage the use of natural 
language within the LISP community. 

Online references for the full source of langutils and a 
release of the Python-based MontyLingua toolkit can be 
found in [6] and [8]. 
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