
Langutils: A Natural Language Toolkit for Common Lisp
Ian Eslick

MIT Media Laboratory
20 Ames Street, Rm. 389

Cambridge, MA 02139
+1 617 324-1639

eslick@media.mit.edu

Hugo Liu
MIT Media Laboratory

20 Ames Street, Rm. 320D
Cambridge, MA 02139

+1 617 253-5334
hugo@media.mit.edu

ABSTRACT

In recent years, Natural Language Processing (NLP)
has emerged as an important capability in many
applications and areas of research. Natural language can be
both the domain of application and an important component
in the human-computer interface. This paper describes the
design and implementation of "langutils,” a high-
performance natural language toolkit for Common Lisp.
We introduce the techniques of real-world NLP and explore
tradeoffs in the representation and implementation of
tokenization, part-of-speech tagging, and parsing. The
paper concludes with a discussion of the use of the toolkit
in two natural language applications.

General Terms
Performance, Design, Languages, Human Factors,
Algorithms

Keywords
Chunking, Tagging, Tokenization, Natural Language,
Parsing

1. INTRODUCTION
Natural Language Processing is becoming an important
capability for many modern applications. From e-mail to
user interfaces and speech interpretation to text processing,
enabling a computer to perform manipulation and
interpretation of language can dramatically enhance the
usefulness of a program to its user. Major forms of natural
language processing in use today include:

- Dialog or speech systems use natural language,
either written or text, as commands to an
application; usually use restricted grammars.

- Document classification automatically maps a
document into a structured index or ontology.

- Search and retrieval indexing of natural
language content can be helpful in building richer
search interfaces over text documents or web
content.

- Textual analysis analyzes text for various
purposes such as gisting emotional affect, topic
spotting, and acquiring user models.

- Question answering and information retrieval,
still an area of heavy research, use heavy natural
language techniques to identify specific kinds of
information within larger texts.

This paper describes a Common Lisp toolkit [6] for line-
and batch-oriented processing of English language content
that can, in part, enable the aforementioned applications.
The toolkit was substantially based on the original
functionality of the Python-based MontyLingua toolkit [8]
targeted specifically for large-scale, high-throughput text
analysis.

In Section 2, we motivate the specific algorithms selected
for the toolkit and briefly describe their operation. Sections
3 through 5 discuss performance and implementation issues
for tokenization, tagging, and chunking, respectively. We
also discuss how unique features of LISP simplify the
writing and management of these tasks. Section 6 explores
the application of the toolkit to three representative
applications and Section 7 introduces potential extensions
to the system.

2. BACKGROUND AND MOTIVATION
The first stage of processing any unstructured text is to
“parse” it into a more structured representation that
annotates the key syntactic constituents over which
semantic analysis can be performed. The process of parsing
text typically consists of tokenizing the text into distinct
words and punctuation tokens, mapping each token to a
corresponding lexicon entry, tagging the token with an
appropriate part of speech given the local context of use,
and finally parsing or chunking the stream of tokens into
phrase groups according to part-of-speech type, lexical
features (such as tense), and the constraints of the
language’s grammar. Each of these major steps is described
below. A lexicon is a linguistic dictionary consisting of
formal information about the form, use, and parts of speech
of specific words. The term ‘lexical’ means “related to
elements of a lexicon.” A grammar for natural language,
much as for programming languages, describes valid

arrangements of words and punctuation and how specific
atoms and phrases can be assembled into valid compound
forms.

2.1 Tokenization
To allow a part-of-speech tagger to clearly identify the
constituent elements of an English sentence, we first need
to clearly extract the token sequence that provides the
important syntactic building blocks. For example, we need
to perform transformations such as:

“…do: first a” => “…do : first a” Punctuation separation

“…after. The End.” => “…after . The End .” Period
separation

However, the transformation cannot be implemented as a
set of character-local rules, as the following sentence
tokenization illustrates:

“Pencil in an appt. for tomorrow at 6:00 o’clock.” =>

“Pencil in an appt. for tomorrow at 6:00 o’clock .”

A correct tokenization of the above sentence only separates
the period from its adjacent characters. The colon in 6:00
and the period in appt. should not be separated from their
surrounding characters.

The process of tokenization in natural language processing
remains a bit of a black art. The proper algorithm for
tokenization depends greatly on the nature of input you
expect: types of errors, internal structure of tokens (such as
6:00), etc. Formal, technical documents often require very
different handling than, for instance, text context extracted
from a web page or news articles. For most English
expressions, a list of common abbreviations along with
special sub-forms for time, addresses, and such have to be
maintained along with basic language-defined rules.

2.2 Tagging
Once the input has been tokenized, it should consist of
linguistically distinct substrings separated by whitespace
characters. Each unique substring should now have a
specific syntactic role--such as a sentence-ending period or
phrase-identifying comma--or it should be a word in the
target language’s lexicon. The result provides the
representation for part-of-speech (POS) tagging.

Many approaches to automated POS tagging exist, and it
remains an area of active research. The primary algorithmic
approaches that have remained popular in recent years are
(1) rule-based and (2) stochastic; both are considered
supervised algorithms because they require manual
engineering, such as manually tagging training corpora and
specifying a lexicon. Rule-based approaches such as the
Brill tagger [2] encode expertise into rules that make
tagging decisions based on context frames (i.e. the window
of tokens surrounding the current token), and
morphological clues (e.g. guess that an unknown word

ending in “-s” is a plural noun). Stochastic approaches (cf.
[5]) perform tagging based on word-tag frequency (e.g.
assign a word the most frequent tag for that word from the
training corpus), or based on Bayesian n-grams (i.e. a
word’s best tag is conditioned on a window of n words
which surround it). More complex stochastic approaches
often use Hidden Markov Models to combine information.

The rule-based approach offers arguably greater
algorithmic transparency in authoring and debugging, while
stochastic taggers tend to behave more opaquely and fail
more irrationally. The performance of stochastic taggers
also tends to be more closely tied to the genre and nature of
the training corpora. Of course, overall evaluated tagger
performance is a prime consideration, regardless of
methodology. For these reasons, we chose the Brill tagger
because as it is the most well known rule-based tagger,
variously reported to tag words with an accuracy between
90-96%, depending on the implementation and corpus.
Additionally, the Brill tagger is well positioned for NLP
interoperability and has established multilingual support;
the Brill tagger uses the Penn Treebank tagset [11], a
widely used convention in the POS tagging community,
and has been trained to tag several other natural languages
such as French and Spanish.

The Brill tagger operates in two phases. The first phase
uses the lexicon to provide the most likely POS tag for
known words. If a word is unknown, default rules are
applied along with a set of lexical rules that use suffix,
prefix, and other word-local information and a default rule
to guess the initial POS tag for all tokens in the document.
The default rules are typically that any unknown word is
tagged with a ‘NN’ and a ‘NNP’ if it is capitalized and not
the first word of a sentence. Lexical rules are learned
during the supervised training phase and then recorded in a
file in the form:
“NN ing fhassuf 3 VBG,”
meaning that if a word is tagged with the default noun tag
‘NN’ and has a three-character suffix ‘ing,’ the POS tag
should be changed to a verb.
The second pass of the tagger takes the initial tag guesses
and transforms the tag of a given word based on the tags
surrounding it. These contextual rules are of the form:

“RB JJ NEXTTAG NN”
This line indicates that an adverb (RB) should be changed
to an adjective (JJ) if the tag of the next word is a noun
(NN).
The result of this process is a probabilistic tagging of the
words of the input sentence. The quality of the tagging is a
function of how similar the input text is to the original
corpus that was used to train the tagging rules.

The reference C implementation of the Brill tagger is
available on the web and includes the training program for

learning rules. This program is not currently implemented
as part of the langutils toolkit; however, the C version can
be used to generate files offline that are read by the LISP
version.

The training program for the Brill tagger leverages a
learning paradigm called transformation-based error-driven
learning. This learning process operates by iteratively
discovering rules that minimize the error of the automatic
tagger vs. a supervised reference set. The training program
is initialized with a set of rule templates of which the above
lexical and contextual rules are instances (ie a template for
the contextual rule would be ‘POS1 POS2 NEXTTAG
POS3’). The program uses default rules and the lexicon to
tag one part of the reference set. Where the reference tags
differ from the automatically assigned tags, the program
instantiates one or more of the templates, which fixes the
error directly. The remaining part of the reference corpus is
tagged in independent passes with each newly instantiated
rule. The individual rule that decreases the overall tagging
error by the largest amount is added to a rule set. The
process iterates by using the default rules plus the current
rule set to create the initial state from which new rules are
instantiated. During evaluation, the rule set is extended
with each of the newly instantiated rules and run separately.
The best rule is added to the rule set. The process
terminates when the improvement in the error rate by the
best rule in a given stage falls below a pre-determined
threshold.

The training program has two stages, one to learn the
lexical rules and minimize the per-word tagging error and
another to learn the contextual rules to minimize the total
tagging error. The two primary reference sets used in the
Brill tagger are the hand-tagged Wall Street Journal [11]
and Brown corpora [7], but any properly tagged corpus can
be used with the training program.

2.3 Parsing and Chunking
Once a high-quality tagging of the tokens is accomplished,
a process to parse those words into meaningful groupings is
needed before any significant semantic processing can take
place. Parsing typically results in the construction of parse-
trees that represent at the higher levels of the tree syntactic
groups, such as sentences, clauses and verb and noun
phrases. As you introduce richer subphrases, as well as
commas, colons and semi-colons, conjunctions and
disjunctions (and/or) and other syntactic words, finding the
specific tree arrangement relating one phrase to another
becomes quite difficult.

The chunking process is a subset of a complete parser that
identifies the basic leaf phrases in a parse tree: the noun,
verb, and adverbial and prepositional phrases. They can
appear as simple patterns of POS sequences, such as ‘DT JJ
, JJ NN NN’ which identifies a noun phrase such as
“the/DT large/JJ ,/, wary/JJ basset/NN hound/NN”.

With a chunked form of the sentence available, we can
perform lightweight syntactic and semantic analysis
without developing a complete parse tree. For example,
phrase attachment involves knowledge of specific words in
the phrases, which helps to identify high likelihood
attachments. We can also train a classifier to identify
specific semantic relationships (cause, proceeds, etc)
among different chunks.

Identifying full parse trees has exponentially more
complexity than identifying the constituent chunks. The
popular parsers today, such as Michael Collins’ statistical
parser [4], train statistical models of phrases and phrase
relationships over large corpora. The performance of these
systems typically yields a very low throughput system.
However, we can trade quality and depth of analysis for
speed. Langutils’ design allows a developer to trade off
performance against the depth and quality of analysis
required by the end application.

2.4 Other Important Language Capabilities
There are many other functions a language-oriented library
may want to provide to a developer.

Lemmatization. For example, you may want to take all the
surface forms of a verb or noun and unify them for
purposes of analyzing the semantic content irrespective of
time, possession, or plurality. A common linguistic term for
this process is lemmatization, which means finding the
lemma or root definition of a lexical form. Once you have a
lemma, you may also want to generate all valid surface
forms to help generate, for instance, all valid sentences that
express a given semantic relation between two lemmas in a
query expansion (ie “John ran in a marathon,” “John runs
in a marathon,” “John running in a marathon,” “John can
run in a marathon,” “John will run in a marathon,” etc).

Spelling correction. When analyzing open text, it is often
important to automatically correct the most common
spelling mistakes to avoid assuming a misspelled word is in
fact an unknown noun or verb.

Stopwords. The analysis of certain large-scale corpora often
requires that you focus on the content words such as major
verbs or nouns, and ignore words that play a more syntactic
role such as ‘with’ or ‘and.’ This is called stopword
removal.

Semantic analysis. Finally, there are syntactic-semantic
analysis tools useful for extracting some basic information
from chunked language such as phrase attachment and
anaphor resolution (references of he, she, it, that, etc).

3. REPRESENTATION
The intended application of the langutils toolkit was
analysis of large bodies of text; therefore, minimization of
the performance footprint became a significant constraint
on its design. Being sensitive to performance requires

thinking first about algorithm and data structure choices
and the impact of those choices on cache and CPU
behavior. After those decisions are settled, we can focus in
on optimizing for local code generation.

In LISP, we aren’t forced by default to always consider and
make low-level performance choices, as is typical in C++.
Because of this, additional knowledge is required to move
from writing programs quickly to writing efficient
programs. In one sense, optimizing LISP programs is
harder than in more primitive languages because the
surface syntax does not immediately inform us as to the
storage and computation costs at the machine level.
Optimization of LISP programs requires new syntactic
constructs such as inline type and optimization
declarations, as well as consideration of the uses of first
order procedures, consing and numbers. Properly cared for,
however, LISP programs can perform as well as any
popular “high efficiency” language and above all, you only
have to expend this effort in the higher level design and in a
few low level building blocks – the rest of the program
benefits from LISP rapid development model. In the toolkit
we highlight on three primary classes of optimization:
cache-sensitive data representations, algorithms that
optimize for locality, and enabling efficient compilation.

An immediate implementation choice facing a natural
language library is choosing how to represent the input
strings. You can maintain the original text and add
annotations as part of the strings (e.g. tagging ‘run’ yields
‘run/VBD’) or choose a less directly readable but more
efficient machine representation. In MontyLingua the
decision was made to leverage Python’s built-in regular
expression library and perform all processing directly in the
text. This made it easy to describe regular expressions over
text such that the code clearly reflected the intended
semantics.

In the case of Langutils, throughput was our top priority.
We chose to map each unique natural language component
to a unique integer token that serves as an index to various
table-based resources such as the lexicon, stopword lists,
and spelling corrections. This conversion takes place after
tokenization and the lexical rule application during tagging,
at which point all the original string content is converted
into arrays of token integers. We use a CLOS class, the
vector-document to maintain additional information about
the source text, such as origin and the list of POS tags
generated by the tagger.

4. TOKENIZATION
In this section token is a generic term referring to
contiguous sets of non-whitespace characters. Tokenization
converts an input token stream to an output token stream
separating punctuation from input tokens. As described in

section 2, we only want to separate punctuation if it plays a
direct syntactic role. Many punctuation characters are part
of specific tokens, as in numbers (2.00), times (2:00) and
dates (12/24/05).

We observed in Section 2.1 that the process of identifying
where to place new whitespace characters requires a
contextual window of characters around the present
position to be considered. This window is not of fixed size,
prohibiting the use of a lookup table. In general we need to
have available the information for all the ways in which
punctuation-containing tokens might get parsed so that we
can separate sentence syntax markers from token syntax
markers.

The simplest approach to efficiently solving this problem is
to build a simple automaton that directly recognizes all the
valid cases of tokens within (i.e. floating point number vs.
abbreviation vs. end of sentence). Rather than build the
infrastructure for efficient parsing from scratch, we chose
to follow the techniques described in Henry Baker’s classic
paper on META [1] that builds on a parsing technique
described in [12].

4.1 META
META is a macro package and design methodology in
which it is easy to describe near optimal parsing for a wide
variety of languages. Moreover, like the Attributed
Grammars that most undergraduate CS majors learn,
META expressions can perform computations while they
are matching sub-expressions in the input.

META expressions are based on a reader syntax and macro
package for building conjunctions and disjunctions, type
assertions and in-line procedure calls (acting as terminal or
non-terminal productions). The with-string-meta macro
uses variable capture in the top level macro to provide
standard labels (index, string) describing the state of the
parser so we can easily create local state markers in
procedures to implement arbitrary look-ahead and
backtracking for sub-expressions. A meta-match macrolet
is defined by the top-level macro and matches META
expressions against the current state, returning t or nil based
on whether that expression matched or not. By putting
various meta-match calls into labels statements and
recording the starting value of index, we can easily have
our expressions broken up and reused. This improves
readability but also enables the parsing of a large class of
context-free grammars.

META provides reader syntax for generating compact
meta-match expressions. In these expressions, [e1 e2 …]
means AND, {e1 e2 …} means OR, !(expr) means evaluate
the expression ‘expr’ and @(test var) means to do a type

test on var. There is an example of the use of this syntax in
section 4.3 below.

We extended the META program by adding a built-in
procedure name called meta-dict such that !(meta-dict
name) will determine if the current string matches any
string in a list of strings referred to by ‘name.’ This
construction enables us to easily ignore known
abbreviations when tokenizing periods.

4.2 Tokenizer Design

The tokenizer proceeds in two stages:

1) Scanning the original string input and extracting
all punctuation that is adjacent to other characters
by copying the source data into an output buffer
and inserting spaces to isolate the character.

2) At the end of each contiguous set of characters,
search for errors in the parse (part of a number,
abbreviation, etc) and undo the separation when
necessary.

Thus the parser has a set of internal functions for scanning,
copying, and manipulating the source and destination
strings at the ‘token’ level and a second set of internal
functions for testing for specific tokenization sub-cases.
The first set of functions takes all punctuation characters
that might need to be tokenized, and optimistically
separates them. The set of sub-cases recognizes when this
should not have happened and removes the whitespace,
effectively undoing the first stage’s action.

We chose this approach to optimize for the common case,
making a trade-off between the cost of cleaning up
incorrect tokenization and that of testing every token
against all possible parses. Instead, we test for punctuation-
including tokens only after we see a token with a
punctuation character and undo the tokenization only when
it would have been accepted by a regular expression for
that particular token type.

The langutils tokenizer supports contractions, possessives,
numbers, dates, times, standard abbreviations, common
abbreviation, and capitalized proper names. It also detects
end of sentence conditions and inserts a newlines after
sentences so input can be processed one sentence at a time
by reading out lines from the resulting string. The tokenizer
interface is intended for use in both batch/string and
streaming mode, so you can process chunks from a large
file or a continuous network stream. The tokenize-stream
returns a value list consisting of success-p, final-index,
tokenized-string and remainder-string. The tokenize-string
interface calls tokenize-stream on a stream version of the
input string.

4.3 Tokenizer META Expressions
The recognizer for a valid case of a time, date, or simple
numbers is implemented as follows.

(fix-numerics (&aux (old-index index) d)
 (or (meta-match [@(digit d)
 {#\Space}
 {#\: #\, #\/}
 {#\Space}
 @(digit d)
 !(delete-spaces (- index 4) 2)
])

 (progn (setq index old-index) nil)))

The original string “2:30” would be “2 : 30” after the
scanner was applied. So that the token ‘:’ would not be
inserted into the token stream, we want to recombine the
three tokens into a single token “2:30.” The above function
tests for this specific failure case and if the test fails, it
setq’s the current index (in the outer let statement) with the
index from when the function was called (old-index). The
expression beginning with meta-match uses the META
syntax to test the string buffer at the current index for any
sequence of: a digit, a space, a colon, comma, or slash
followed by another space and any digit. This captures all
strings of the form “$2 . 00”, “3 : 45” and “12 / 24”. The
final expression between the square brackets starting with
‘!’ is an imperative that is only run if all the prior
expressions match as true. This procedure deletes two
spaces between the current index and the current index
minus 4.

4.4 Performance Optimization and Results
We have designed the parser to minimize the number of
comparisons and the amount of backtracking that has to be
done over input tokens. Now, to ensure that the compiler
can produce optimal code, we must insert the proper
optimization and type declarations for our data structures
and performance-critical functions. To ensure that
functions can be open-coded by the compiler, their input
arguments must have their type properly declared.

Our input array is a string, so we use the char function to
access characters at specific offsets. char is a special case
of aref. We write processed characters into a simple-array
of type base-char using aref. Both of these procedures can
be open coded as load instructions if the source variables
are strings and simple-arrays and the indexes are known to
be proper fixnums.

To avoid allocating memory dynamically, we create a
single static array for all operations accessible to the parser
closure. At the end of a parse session, we transform the
array back into a string, requiring a second visit to the
array. The array allocation is increased to support the
length of any input string. For moderately sized inputs the

scratch array is likely to already to be in the L2 cache
minimizing the initial cache misses.

The performance data in the rest of this document are based
on the Allegro 7.0 LISP compiler and runtime on a
1.67Ghz G4 PowerBook with a 167Mhz front-side bus.
Running in a tight loop on a test document, the tokenizer
can process approximately 30,000 words, or nearly 200kB,
per second using an 8-kilobyte test document.

5. POS TAGGING
The Brill tagger, as previously described, proceeds in two
stages:

1) Create an initial tag using the lexicon, default
rules and lexical rules

2) Change initial tags based on rules matching the

adjacent words and tags

POS tags are represented in memory as LISP symbols. We
chose this representation because it is easier to write and
debug. We avoided this representation with words because
several hundred thousand symbols in the langutils package
have a significant storage impact.

5.1 Initial Tagging
The first step of POS tagging scans through the tokenized
text string and uses characteristics of the text to guess the
first initial POS tag. The algorithm looks up the token id for
the word in an EQUAL hash table indexed by the token
string. The ID is used to find a lexicon entry. If it exists, the
most likely POS tag is pulled from the lexicon and used as
the guess for the tag.

If the lexicon entry is empty, the algorithm then defaults to
a noun (NN) or proper noun (NNP) depending on whether
the word is capitalized. We then apply the set of lexical
rules that were learned during training to see if the prefix,
suffix, or other lexical characteristic of the unknown word
indicates with high probability a particular part of speech.

Lexical rules are represented to the tagger as text lines in a
file that parameterizes specific comparison templates as
discussed in section 2. For example, “NN ble fhassuf 3 JJ”
means that if the last three letters of an unknown word
labeled as an NN is ‘ble’, then it’s probably an adjective
(JJ). The template referenced by “fhassuf” is created by the
function make-lexical-rule, which returns closures
implementing a specific instance of the template.
The closure template is defined as follows:
((string= fname "fhassuf")
 (let ((old-tag (mkkeysym (first list)))
 (suffix (second list))
 (count (read-from-string (fourth list)))
 (new-tag (mkkeysym (fifth list))))

 #'(lambda (pair)
 (let ((token (car pair))
 (tag (cdr pair)))
 (if (and (eq tag old-tag)
 (strncmp-end2
 suffix
 token
 count
 (- (length token) count)))
 (progn (setf (cdr pair) new-tag)
 pair)
 pair)))))

The input line is split into substrings, each of which is
converted by the let bindings based on the form of the
matching closure template. The comparison performed by
the inner call to strncmp is a simple EQ between elements
of the strings treated as an array.
After the token ID has been looked up and the initial tag
has been guessed, the main loop writes the token ID and tag
symbol into two temporary arrays used by the second
tagging stage.

The code above does not include the declare statements
necessary to allow a compiler to open code the primitive
calls, but in the actual implementation available online, all
types and aggressive optimization switches are included to
enable the compiler to open-code primitives and generate
as compact code as possible within these closures. The call
to strncmp is declared inline, which would allow for good
additional optimization, but the Allegro compiler ignores
the inline declaration except for built-in primitives. This
makes sense for development, but is non-ideal for this
particular application. (A macro version of strncmp would
accomplish this objective.)

5.2 Contextual Rule Application
Representing text as a linear sequence of token IDs has
tremendous performance benefits over storage as raw
strings. The simplification of the contextual matching rules
alone will yield a significant payoff in runtime
performance. This also significantly compacts the total
storage requirements for a given amount of text, implying
fewer runtime cache misses as well as fewer load, store and
compare operations.

Contextual rules are represented similarly to the lexical
rules described above. A make-contextual-rule function
returns compiled closures. Closure variables capture values
that characterize an instance of the rule template defined in
the enclosed lambda statement. A contextual rule is
represented on disk as:

“RB JJ NEXTTAG NN”
This rule implies that a word tagged as an adverb that
precedes a noun should instead be an adjective.

Here we leverage the power of the LISP macro system by
building in a level of abstraction over the use of individual
case statements above.

5.2.1 A Simple Template Language
The full rule template has numerous declarations, may
operate over several different possible arrays (tag or word
array), and matches against different offsets into those
arrays. However, this can be abstracted to a simple set of
labels and aref indices. Thus, we can capture the essential
parameters of the complex case, let, and lambda expression
as:

("NEXTTAG" (match (0 oldtag) (+1 tag1)) => newtag)

This rule is labeled “NEXTTAG,” and the semantics of the
rule indicate that if the current pointer in the document has
a POS tag of the type oldtag then if the next word’s POS
tag matches tag1, then we should change the current POS
tag to newtag. The three labels, oldtag, tag1 and newtag
have a specific meaning to the macro as defined by the
following partial table:

(list 'tag1 'tags '(mkkeysym (fourth pattern)))
(list 'tag2 'tags '(mkkeysym (fifth pattern)))
(list 'word2 'tokens '(id-for-token (fifth
 pattern)))
(list 'oldtag 'tokens '(mkkeysym (first pattern)))
(list 'newtag 'tokens '(mkkeysym (second
 pattern))))

This table tells the template construction macro to create a
let binding as specified above for each name referenced in
the original rule template and into which array the offset
should be computed. The template creation macro function
then generates an individual case statement, including
optimization declarations, as illustrated below:

((string= name "NEXTTAG")
 (let ((tag1 (mkkeysym (fourth pattern))))
 #'(lambda (tokens tags idx)
 (declare (ignore tokens)
 (type (simple-vector symbol) tags)
 (type fixnum idx)
 (optimize speed (safety 0)))
 (if (and (eq (svref tags idx) oldtag)
 (eq (svref tags (+ idx 1)) tag1))

 (progn
 (write-log …)
 (setf (svref tags idx) newtag))))))

The oldtag and newtag variables are bound external to the
individual case statements as they are at the same location
in the rule expression for all rules. The tokens, tags and
current index are passed to the rule through the lambda
arguments.

5.2.2 Performance
The expression generated by the macro above will be
compiled directly into a closure containing code for two

comparisons with constants that, upon success, will side
effect the new tag directly into the POS tag array. This can
be done in a handful of instructions and we pay for our rule
abstraction the overhead of a function call. It is then highly
efficient to apply a set of rule closures, one at a time, to
each location in the document arrays. The rules should all
become cached in the instruction cache (barring task
switching effects) and the closure frames should mostly be
cached in the data cache (there may be some minor
interference with array date). We achieve full locality on
each fetch of array data into the data cache.

A tokenized string can be fully processed into a vector
document at the rate of 15,000 words per second for small
(50 word) strings. For our 8-kbyte test document, we end
up with a vector document of 1670 tokens IDs. Running the
tagger in a tight loop over the tokenized source string, we
achieve a throughput of 21,000 tokens per second, or 12
moderately sized documents.

6. PHRASE CHUNKING
The final major capability provided in the langutils toolkit
is phrase chunking. Once a tagged vector-document object
has been created, the chunking process can be very
lightweight. Chunking becomes looking for a valid linear
sequences of tag types. The total set of valid linear
sequences matching a particular phrase type can be
expressed as simple regular expression:
(defconstant verb-pattern
 '(and (* or RB RBR RBS WRB)
 (? or MD)
 (* or RB RBR RBS WRB)
 (or VB VBD VBG VBP VBZ)
 (* or VB VBD VBG VBN VBP VBZ RB RBR RBS)
 (? or RP)
 (? and (* or RB) (or VB VBN) (? or RP))))

In this simple regular expression, ‘*’ indicates to match
zero-or-more of the following expression, ‘?’ for zero or
one and ‘+’ for one-or-more. The absence of a modifier
means to match exactly one instance of the expression. The
and/or labels at the head of an expression indicate whether
all or any of the following constants should match for the
full expression to match.
It is easy enough to write specific code to support a given
regular expression, or to use the META infrastructure to
create the parser by hand. However, we do not need the full
generality of META based parsers, and instead directly and
efficiently support this syntax with a simple macro system
that compiles these expressions into custom parsers that
operate directly on the text and tag arrays.

6.1 Regular Expression Compiler for Arrays
The regular expression syntax and semantics provided
above are intended to operate on arrays of data. The result
of applying the expression to an array is a pair of offsets
into the array indicating where the matched pattern begins

and ends. A generic vector-match macro abstraction was
developed for this purpose and used in support of the
phrase-chunking implementation. This package provides a
procedure, match-array, that recursively generates the
direct and, or, and if expressions implementing the regular
expression pattern. The generated code keeps track of the
starting offset and finishing offset of the match and can be
called incrementally at each incremental offset into an array
to search for any match of the regular expression it
implements.
A number of utility macros were constructed around
match-array such as compile-pattern, find-all-patterns,
vector-match1 and do-collect-vector-matches. The
function compile-pattern calls the LISP compiler on an
interpreted lambda to generate a compiled closure that
takes as input an array and offset and returns the start and
end indices upon finding a match. do-collect-vector-
matches is a context-creating macro that takes as its
arguments two labels, a pattern expression, an array object,
and a body expression. The body is executed whenever
there is a match of the pattern against the vector; the labels
are set to the beginning and ending indices of the matched
region.
The implementation of a specific phrase chunker requires
only that we call do-collect-vector-matches over the
appropriate array within the vector-document we are
analyzing. The body creates a phrase object that stores the
beginning and ending index of a particular match as well as
the source document it references. Here is the chunker that
finds phrases described by the verb-pattern above:

(defmethod get-verb-chunks ((doc vector-document))
 (do-collect-vector-matches (s e verb-pattern)
 ((document-tags doc))
 (make-instance 'phrase
 :type :verb
 :document doc
 :start s
 :end e)))

6.2 Chunking Performance
There are strong locality benefits to these compiled regular
expressions. The constants and matching code are resident
in the instruction cache and the data flows linearly through
the data cache. A streaming pre-fetching CPU should
successfully hide all of the latency to main memory for this
application, leaving the pipeline performance as the
limiting attribute.
Using another tight-loop test where we extract verb phrases
from our reference document, we can achieve a throughput
of 250k tokens per second, or dozens of news stories per
second. Tokenization and tagging, because of the data
conversion and copying involved, are currently the
bottlenecks for langutils processing throughput. Because of
this, we can easily perform several extraction passes for

different phrase types over small documents with minimal
overall performance impact.

7. APPLICATION EXAMPLES
There are a number of good applications for the langutils
library, a few of which are illustrated in the following
section.

7.1 Command and Control
Command and Control is a paradigm for a speech or
written natural language interface which allows a user to
control a high-level programmatic API by speaking or
typing simple sentences of the imperative form (e.g. “Show
me all the coats for winter”) or declarative form (e.g. “The
program should convert PDF into HTML”). Within these
two simple constructions, it is relatively straightforward to
map subject-verb-object roles onto a langutils chunked
representation, and then subsequently to translate the
syntactic frame to a high level programmatic API
command. For example,
Show me all the coats for winter 

(VX Show VX) (NX me NX) (NX all the coats NX) (PX
for winter PX) 

verb: Show; obj1: me; obj2: all the coats; obj3:
for winter 

show_webpage(user=’user’,
 sql_command=’select all coats from table
 where season=winter’)

To achieve end-to-end command and control, a speech
recognition package interprets user utterances into text, and
langutils maps this text into subject-verb-object roles that
could then map more cleanly into a particular application’s
API. Using this approach, for example, an e-commerce
website could allow users to navigate using natural
language utterances.
In a variation on the command and control idea, the
Metafor code visualization system [10], uses MontyLingua
to map an English narrative written in
declarative/imperative form into programmatic form, i.e.
object.function(argument). It would be straightforward to
build this functionality on top of langutils.

7.2 Extracting Common Sense
Knowledge or expertise is often more easily elicited
through unrestricted natural language utterances, especially
when engaging end-user authors who are casual non-
programmers. However, to make computation facile,
knowledge needs to be expressed more concisely and
uniformly than free English sentences. Here,
langutils/MontyLingua has an opportunity to bridge a gap,
allowing knowledge to be authored as unrestricted natural
language, and automatically extracting from the free text a
more concise Subject-Verb-Object* representation, with
words morphologically lemmatized and auxiliary words
stripped.

The Open Mind Common Sense (OMCS) knowledge base
[13] is a corpus of 800,000 English sentences imparting
social, causal, and physical common sense knowledge
about the everyday world. Some of the sentences are pre-
structured as they were gathered through a website as a fill-
in-the-blanks activity (e.g. “The effect of ____ is ____”).
However, users routinely fill these blanks with complex
utterances. Using langutils/MontyLingua, the OMCS
sentences were parsed into an ontology of syntactically
regularized forms such as Noun Phrase (e.g. “sandwich”),
Adjective Phrase (“red”), Verb (“eat”), and Verb-Argument
(“eat :: sandwich :: in restaurant”) compounds. These
regularized forms are taken as a computation-friendly
knowledge representation and used to constitute the
300,000 nodes of ConceptNet [9], the common sense
reasoning engine generated from the OMCS corpus.
In addition to extracting machine-computable common
sense from the OMCS corpus, langutils/MontyLingua is
also an integral part of ConceptNet’s high-level document
processing API, enabling it to perform topic spotting,
textual affect sensing, summarization, and other tasks by
parsing any input text into the same ontology of
syntactically regularized forms so that ConceptNet can
‘recognize’ concepts in free text.

7.3 Large-scale Web Mining
Numerous efforts today use large-scale statistics over the
web to mine for both linguistic and topic-specific content.
In our commonsense reasoning project, we were
investigating the relationship between concepts on a
specific topic. Specifically, we were mining the web to
discover neighborhoods of related ‘event’ concepts in the
form of Verb-Object and Verb-Argument phrases such as
“won a marathon” and “fell onto the ground.”
The application used the public Google API to find pages
related to a target query concept such as “ran a marathon.”
The top 100 pages returned by Google were downloaded,
stripped, tokenized, tagged, and chunked. The extracted
chunks from all the pages were combined and ranked
against each other according to several ranking heuristics,
yielded a ranked list of matching concepts. Initial
evaluations indicate that the system could achieve 30%
high quality conceptually related phrases with 70% noise.
Ongoing work on ranking and extraction seeks to boost the
signal to noise ratio of the ranking system.
The aggregate throughput of the system in a sustained
mining context is 200 web pages per minute on a Dual
PowerPC G5 with an average page size of 5kBytes of html-
stripped text. If we factor out the time spent accessing the
Google API and downloading the HTML pages, the system
achieves a throughput of nearly 400 pages per minute.

8. ENHANCEMENTS AND EXTENSIONS
There are a number of important enhancements and
extensions to the current toolkit implementation we have
considered.

Token representation. The current token representation is
flawed, as all tokens are assigned an integer value, whether
a number, date or word. The code space of valid tokens in a
given natural language lexicon is bounded to hundreds of
thousands, but the code space of numeric or other
structured tokens is unbounded. An escape coding
mechanism in the vector-document abstraction could be
used to indicate special token types that could then be
looked up separately in a table, perhaps in an appropriate
pre-processed form based on their specific type.

Tokenization. There is an opportunity to improve
performance by writing a compiler for our current
implementation of meta-dict by factoring out common
prefixes of the dictionary strings and ordering the prefix
matching to minimize the total number of characters tested
against a random language string. There are a number of
ways to handle the tokenization, and we are not convinced
that the approach we chose is optimal within the overall
META approach.

Improved tagger support. We intend to add the Brill
training program to the toolkit in the future. We may also
investigate the ability to tune a rule set based on the
discovery of near misses by a semantic interpretation layer
(i.e. an unknown token is a person, etc). This will be
important for applications that want to parse text containing
poor grammar, such as personal e-mail, or for expert
domains for which there are no hand-labeled corpora.

Multilingual support. The parsing approach we chose
allows for relatively gentle scaling to multiple languages.
Tagging scales directly as the Brill tagger has been trained
on a few other languages, and only regular expression
chunking and linking rules need to be written for other
languages. Syntactic parsing into Subject-Verb-Object*
form is easier in some languages; for example, Korean,
Latin, and Japanese employ morphology or particles to
explicitly mark a noun phrase as a subject or object, direct
or indirect.

The potentially difficult step in adding a new language
would be updating the tokenizer. For some symbol-based
languages, this is straightforward, but for many languages
based on the Arabic alphabet, an alternate tokenizer for
each language or a more general, customizable tokenizer
would be needed.

9. SUMMARY
We have presented the motivation, features, and
optimizations used in implementing a natural language
processing library in LISP. Several of the unique features
of LISP were presented as an illustration of how we can use

LISP’s mechanisms for higher-order syntactic abstractions
without losing the capacity for competitive run-time
performance.

We further presented applications of natural language
processing to several domains and we hope that the
availability of this library will encourage the use of natural
language within the LISP community.

Online references for the full source of langutils and a
release of the Python-based MontyLingua toolkit can be
found in [6] and [8].

10. REFERENCES
[1] Henry Baker. 1991. Unpublished manuscript.

http://home.pipeline.com/~hbaker1/Prag-Parse.html
[2] Eric Brill. 1990. “A simple rule-based part of speech

tagger”, In Proceedings of the third conference on
Applied Natural Language Processing. Association for
Computational Linguistics, Trento, Italy. pp152-155.

[3] Eric Brill, David Magerman, Mitchell Marcus. 1990.
Deducing linguistic structure from the statistics of
large corpora. In DARPA Speech and Natural
Language Workshop. Morgan Kaufmann, Hidden
Valley, Pennsylvania, June.

[4] Michael Collins. Head-Driven Statistical Models for
Natural Language Parsing. PhD Dissertation,
University of Pennsylvania, 1999.

[5] Evangelos Dermatas, & George Kokkinakis, 1995.
Automatic stochastic tagging of natural language texts.
Computational Linguistics 21.2: 137-163.

[6] Ian Eslick. Web based resource.
http://www.media.mit.edu/~eslick/langutils/

[7] W. Francis and H. Kucera. Frequency Analysis of
English Usage. Houghton Mifflin, Boston, 1982.

[8] Hugo Liu. Web based resource.
http://www.media.mit.edu/~hugo/montylingua/

[9] Hugo Liu and Push Singh (2004). “ConceptNet: a
practical commonsense reasoning toolkit”. BT
Technology Journal, 22(4):211-226

[10] Hugo Liu and Henry Lieberman (2005) Programmatic
Semantics for Natural Language Interfaces.
Proceedings of the ACM Conference on Human
Factors in Computing Systems, CHI 2005, April 5-7,
2005, Portland, OR, USA, to appear. ACM Press.

[11] M. Marcus, Beatrice Santorini and M.A.
Marcinkiewicz: Building a large annotated corpus of
English: The Penn Treebank. In Computational
Linguistics, volume 19, number 2, pp313-330.

[12] Schorre, D.V. "META II: A Syntax-Oriented Compiler
Writing Language". Proceedings of the 19th National
Conference of the ACM (Aug. 1964), D1.3-1 - D1.3-
11.

[13] Singh, P., Lin, T., Mueller, E. T., Lim, G., Perkins, T.,
& Zhu, W. L. (2002). Open Mind Common Sense:
Knowledge acquisition from the general public.
Proceedings of the First International Conference on
Ontologies, Databases, and Applications of Semantics
for Large Scale Information Systems. Lecture Notes in
Computer Science (Volume 2519). Heidelberg:
Springer-Verlag.

